CLOSTRIDIUM DIFFICILE: IMPROVING DIAGNOSIS AND TREATMENT

Joshua T. Watson, M.D.
Lowcountry Gastroenterology Associates
Learning Objectives

• Recognize patients who are highest risk for C. diff infections
• Appropriately use and interpret available C. diff tests.
• Choose the best treatment option for patients with C. diff infections
• Determine when alternate therapies are needed.
Clostridium difficile

- Gram-positive, anaerobic, spore-forming, toxin-producing bacillus first identified in 1935
- First identified as cause of antibiotic-associated colitis in the 1970s
- Most commonly identified infectious cause of antibiotic- and healthcare-associated diarrhea
Impact of *C. difficile* in the US

- In 2011:
 - 453,000 cases of *C. difficile* in US
 - 29,300 patients died
 - 293,000 cases healthcare associated
 - 159,700 cases community associated
 - 107,600 cases hospital acquired

- Estimated costs:
 - $20,693 per hospitalized patient with primary CDI
 - $45,148 per patients with recurrent CDI

Impact at ROPER ST. FRANCIS

• At RSFH’s three hospitals between 2013-2014:
 • *C. difficile* possibly contributed to up to 8 deaths
 • Inpatient hospitalizations for *C. difficile* cost up to $993,080
Risk Factors for *C. difficile* Colonization

- Hospitalization within the last 12 months
- Exposure to corticosteroids
- History of *C. difficile* infection
- Presence of antibody against toxin B
- Chemotherapy
- Use of PPI or H2 antagonists
- Chronic dialysis

Risk Factors for Active *C. difficile* Infection

- **Host-mediated Factors**
 - Recent antibiotic use
 - Use of PPIs
 - Chemotherapy
 - Physical effects of abdominal surgery and NG tubes
 - Advanced age (age ≥ 65 years)
 - Multiple comorbidities
 - Suppressed immune system
 - Inflammatory bowel disease
 - Dense intestinal co-colonization with enterococci
 - Absence of IgG and IgA antibodies to *C. difficile* toxins A & B

- **Pathogen Factors**
 - Colonization with non-toxigenic strains of *C. difficile* (protective)

Colonization vs. Symptomatic CDI

Risk factors for C. difficile colonization
- Previous hospitalization
- Exposure to antibiotics
- Chemotherapy treatment
- Corticosteroid use
- Haemodialysis / renal disease

Exposure to C. difficile spores leading to asymptomatic C. difficile colonization

Factors that protect against progression to symptomatic CDI
- Increased levels of IgG and IgA
- Intact indigenous microbiome
- Colonization by less virulent C. difficile strain

Risk factors for symptomatic CDI
- Increased age
- Exposure and duration of antibiotics
- Presence of nasogastric tube
- Severe underlying disease
- Prolonged hospital admission
- Exposure to drugs that reduce stomach pH

Healthy intestinal epithelial cells with intact microbiome in an individual with asymptomatic C. difficile colonization

Legend
- Clostridium difficile cell
- Normal colonic flora
- Clostridium difficile spore
- Toxin A
- Toxin B

Damaged intestinal epithelial cells in an individual with symptomatic CDI

Risk Factors for Recurrent CDI

- Older age
- \(\geq 10 \) unformed stools per 24 hour period
- Serum creatinine \(\geq 1.2 \) mg/dL
- PPI use
- Continued exposure to antibiotics
- Comorbidities (DM, CKD, higher Charlson score)
- Failure to mount serum antibody do C. difficile toxins

Risk Factors for Complications of CDI

- Age ≥ 80 years
- Abnormal blood tests
 - WBC count $< 4 \times 10^9/L$ or $\geq 20 \times 10^9/L$
 - Albumin < 2.5 g/dL
 - BUN > 20 mg/dL
 - CRP ≥ 15 mg/dL
- Abnormal vital signs
 - Heart rate > 90/minute
 - Respiratory rate > 20/minute

Antibiotic Use and CDI

- Pathophysiology:
 - Disruption of the barrier function of the normal colonic flora
 - Development of *C. difficile* antibiotic resistance leading to strains with increased virulence
- Degree and duration of CDI after cessation of antibiotics is poorly understood.
- Perioperative antibiotic prophylaxis to prevent infrequent and relatively benign infections may not be beneficial in some older adult patients.
- A “herd effect” of antibiotic use has been theorized.

Antibiotics Associated with CDI

Frequently Associated
- Clindamycin
- Fluoroquinolones
- Cephalosporins (broad-spectrum)
- Penicillins

Occasionally Associated
- Macrolides
- Trimethoprim-sulfamethoxazole

Frequently Associated
- Aminoglycosides
- Tetracyclines
- Metronidazole
- Vancomycin

Adapted from Lamont, JT. “Clostridium difficile in adults: Clinical manifestations and diagnosis.” www.uptodate.com.
Gastric Acid Suppression and CDI

- Risk of CDI increases with both H2 antagonists and PPIs.
- Risk of CDI is 1.4 - 2.75 times higher among patients exposed to PPI vs. those without PPI exposure.
- Relationship between risk of CDI and PPI dose and duration is uncertain.

http://www.fda.gov/drugs/drugsafety/ucm290510.htm (Accessed on November 5, 2016)
Factors Complicating Diagnosis

1. Colonization by *C. difficile* is common among hospitalized patients
2. CDI explains less than 1/4\(^{\text{th}}\) of antibiotic-associated diarrhea cases in the hospital setting

When to test for *C. difficile*

- Relevant risk factors PLUS either:
 - Clinically significant diarrhea (≥3 loose stools in 24 hours)
 - Ileus

Lab testing does not distinguish between CDI and asymptomatic carriage

No role for repeating lab testing for cure or for testing while receiving treatment for CDI

*Diagnostic approach for suspected recurrent *C. difficile* is the same as the approach for initial infection.*
Laboratory Testing

- PCR testing
- EIA for *C. difficile* GDH antigen
- EIA for *C. difficile* toxins A & B
- Selective anaerobic culture
- Cell culture cytotoxicity assay
PCR Testing

• Tests for one or more genes specific to toxigenic strains
• Typically tests for gene tcdB (encodes for toxin B)
• High sensitivity (0.86-0.92) and specificity (0.94-0.97)
• Does not test for active toxin production
• Only a single stool sample should be tested
• Results can be available within an hour

Enzyme Immunoassays for *C. difficile*

EIA for GDH Antigen
- Essential enzyme produced by both toxigenic and non-toxigenic *C. difficile* isolates
- High sensitivity, low specificity
- Typically only used in a multistep approach
- Results within an hour

EIA for Toxins A & B
- Toxin B is critical for pathogenicity
- Testing for both A & B gives higher sensitivity
- High specificity, lower sensitivity
- Relatively high false negative rate
- More than one stool can be tested
- Results within an hour

Cultures for *C. difficile*

Selective Anaerobic Culture
- Does not distinguish between toxigenic and non-toxigenic strains
- In combination with toxin testing, it is most sensitive diagnostic method
- Slow and labor intensive
- Useful in epidemiologic studies

Cell Culture Cytotoxicity Assay
- More sensitive than EIA
- Lacks standardization
- Slow turnaround (approximately 2 days)

Algorithm for Diagnosis of C. difficile

1. Patient with diarrhea & risk factor(s) for CDI
2. Send stool for:
 - GDH antigen test (EIA)
 - Toxin A & B test (EIA)
3. GDH positive
 - Toxin positive
 - GDH negative
 - Toxin negative
4. Indeterminate result
 - Perform PCR for tcdB & tcdC genes
5. PCR positive
 - Testing consistent with CDI
6. PCR negative
 - Testing not consistent with CDI
Factors Influencing Treatment Recommendations

- Severity of disease
- Number of previous discrete bouts of CDI
- Underlying infection requiring prolonged use of antibiotics

Classification of CDI by Severity

<table>
<thead>
<tr>
<th>Clinical Severity</th>
<th>Clinical Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsevere illness (mild to moderate)</td>
<td>Must have all: Nonbloody diarrhea (<6 watery stools/day), afebrile, mild abdominal pain, creatinine <1.5x baseline, WBC <15,000/mm³</td>
</tr>
<tr>
<td>Severe illness</td>
<td>Must have at least one: Advanced age, mental changes, serum albumin <2.5 g/dL, WBC >15,000/mm³, creatinine >1.5x baseline, or abdominal tenderness and ileus</td>
</tr>
<tr>
<td>Severe complicated illness</td>
<td>Must have at least one: Hypotension/shock with serum lactate >2.2 mmol/L, need for ICU confinement for CDI, organ failure, or WBC >35,000/mm³ or <2,000/mm³</td>
</tr>
</tbody>
</table>

Treatment Options for 1st Episode of CDI

- Metronidazole
- Vancomycin (PO only)
- Fidaxomicin
- Tigecycline
- Nitazoxanide
- Rifaximin
- Colonic surgery (colectomy or loop ileostomy)

Initial antibiotics causing CDI should be stopped if possible
Metronidazole

- Cost is low
- Shown to be inferior to oral vancomycin for CDI in setting of recurrent and/or severe infections
- Should be used only in mild cases of CDI
- Can be given IV if patient unable to take PO
 - Ileus
 - Shock
 - Toxic megacolon
- Dosing: 500 mg 3 times daily for 10-14 days (PO or IV)

Vancomycin

- Expensive (capsules >$1000 for 10 days)
- Compounded liquid vancomycin cheaper if available
- Superior to metronidazole for moderate to severe CDI
- Can use during pregnancy or breastfeeding
- May increase risk of VRE

Dosing:
- Mild to severe cases: 125 mg PO 4 times daily for 10-14 days
- Severe complicated cases:
 - 250-500 mg PO 4 times daily
 - For ileus or inability to be given enterally, consider 500 mg of vancomycin in 100-250 mL NS per rectum every 6 hours as a retention enema

Fidaxomicin

- Expensive (>\$3000 for 10 days)
- Lower rate of recurrence for non-NAP1/BI/027 strains
 - 8% vs 26% compared to vancomycin for initial CDI
 - 20% vs 36% compared to vancomycin for initial recurrence of CDI
- Narrower antimicrobial spectrum
- Less likely to increase risk of VRE
- Dosing: 200 mg PO twice daily for 10 days

Tigecycline

- Not FDA approved for treatment of CDI
- Limited studies in critically ill patients with refractory CDI
- Can be used as rescue treatment in severe CDI refractory to treatment with vancomycin and/or metronidazole
- Randomized, controlled studies are needed
- Dosing: 100 mg IV, then 50 mg IV twice daily

Nitazoxanide

- Not FDA approved for treatment of CDI
- Expensive (> $1500 for 10 days)
- Comparable efficacy to metronidazole and vancomycin in preliminary studies
- More studies needed
- Dosing: 500 mg PO twice daily for 10 days

Rifaximin

- Not FDA approved for treatment of CDI
- Expensive ($900-1000 for 14 days)
- Effective in CDI unresponsive to metronidazole
- Has been used with tigecycline with or without vancomycin for refractory CDI
- May cause less disruption to normal colonic flora
- More studies needed
- Dosing: 400-550 mg PO twice daily for 14 days

Surgery

- Optimal timing of surgery is uncertain
- Indicated in severe, refractory CDI with:
 - Toxic megacolon
 - Perforation or impending perforation
 - Necrotizing colitis
 - Rapidly progressive/refractory disease with SIRS and multiorgan system failure
 - Peritoneal signs
 - Severe ileus

- Colectomy most beneficial for:
 - Immunocompetent patients aged >65
 - WBC count >20,000 cells/uL
 - Lactate between 2.2-4.9 mEq/L

Surgical Approaches

- Total colectomy with permanent ileostomy
- Subtotal colectomy with ileostomy
- Diverting loop ileostomy with colonic lavage (needs further study)

Initial Recurrence of CDI

- Occurs in ~25% of patients treated with metronidazole and vancomycin
- Symptoms typically similar to those of initial CDI
- Other causes of diarrhea should be considered (i.e. other infections, IBD, IBS, etc)
- Recurrence due to antibiotic resistance is not common
- Nonsevere – metronidazole can be used
- Severe - vancomycin or fidaxomicin recommended

Subsequent Recurrence of CDI

- Risk further recurrences after initial recurrence is between 40-65%
- Treatment strategies:
 - Vancomycin taper or pulsed dosing
 - Vancomycin with rifaximin “chaser”
 - Fidaxomycin for longer duration (21 days)
 - Fecal microbiota transplantation (FMT)
 - Intravenous immunoglobulin (IVIG)
 - Monoclonal antibodies to *C. difficile* toxin(s)

Vancomycin Tapered and Pulsed Dosing

Tapered dosing:
- 125 mg 4 times daily for 7-14 days
- 125 mg 2 times daily for 7 days
- 125 mg 1 time daily for 7 days
- 125 mg every other day (4 doses)
- 125 mg every 3 days (5 doses)

Pulsed dosing:
- 125 mg 4 times daily for 10-14 days (optional), then
- 125 mg every 2 days or 500 mg every 3 days for 3 weeks

Rifaximin “chaser”

- Limited data but has been effective in small case series
- Given sequentially following therapy with vancomycin
- Use may be limited if rifampin-resistant *C. difficile* is a concern
- Dosing: 400-550 mg twice daily for 14 days

Fecal Microbiota Transplantation (FMT)

- Goal is to restore normal colonic microbiota with the use of intestinal microorganisms from a healthy donor
- Can be given via NG tube, colonoscopy, enema, or capsules with frozen product
- Efficacy of over 90%
- Response seen within 24 hours to 12 days
- Response typically durable and well-tolerated
- Considered most effective therapeutic approach for patients with ≥ 3 recurrences of CDI

Donor exclusion criteria for fecal microbiota transplant

Absolute

Risk of infectious agent
- Known HIV, hepatitis B or C infections
- Known exposure to HIV or viral hepatitis (within the previous 12 months)
- High-risk sexual behaviors
- Use of illicit drugs
- Tattoo or body piercing within six months
- Incarceration or history of incarceration
- Known current communicable disease (eg, upper respiratory tract infection)
- Risk factors for variant Creutzfeldt-Jakob disease
- Travel (within the last six months) to areas of the world where diarrheal illnesses are endemic or risk of traveler's diarrhea is high

Gastrointestinal comorbidities
- History of Inflammatory bowel disease
- History of IBS, idiopathic chronic constipation, or chronic diarrhea
- History of gastrointestinal malignancy or known polyposis

Factors that can or do affect the composition of the intestinal microbiota
- Antibiotics within the preceding three months
- Major immunosuppressive medications (eg, calcineurin inhibitors, exogenous glucocorticoids, biological agents, etc)
- Systemic antineoplastic agents

Additional recipient-specific considerations
- Recent ingestion of a potential allergen (eg, nuts) where recipient has a known allergy to this (these) agent(s)

Relative exclusion criteria that might be appropriate to consider

History of major gastrointestinal surgery (eg, gastric bypass)

Metabolic syndrome

Systemic autoimmunity (eg, multiple sclerosis, connective tissue disease)

Atopic diseases including asthma and eczema, eosinophilic disorders of the gastrointestinal tract

Chronic pain syndromes (eg, chronic fatigue syndrome, fibromyalgia)
• Cost per FMT preparation: $485 + S&H
Performing FMT

- Some advocate pretreatment with oral vancomycin (500 mg twice daily for 7 days) when possible.
- Bowel preparation with PEG-based bowel purgative is thought to increase efficacy even if giving FMT by route other than colonoscopy.
- For colonoscopic delivery:
 - 200-300 g of donor stool is suspended in 200-300 mL of sterile saline, homogenized in blender, then strained through gauze pads.
 - Administered via syringe or spray catheter during colonoscopy into the ileum and proximal colon.
- Some advocate also giving an FMT enema the day after colonoscopic FMT

FMT at ROPER ST. FRANCIS

- FMT Protocol started between 2014-2015
- Data from 2015:
 - 25 patients with recurrent CDI received FMT
 - 21 via colonoscopy, 3 via sigmoidoscopy, 1 via NG tube
 - 23/25 (92%) asymptomatic at 8 week follow up
 - No reported adverse events
 - Estimated hospitalization savings of $282,125
 - Microbiota investment: $6,250
Summary

- Risk factors for CDI include recent antibiotic use, recent hospitalization, PPI use, advanced age, suppressed immune system, and others.
- PCR alone or in combo with EIAs is the most common diagnostic tests used now.
- Testing should only be performed on symptomatic patients with risk factors for CDI to avoid overtreatment of patients with asymptomatic colonization.
- Resistance to anti-CDI antibiotics is rarely a problem, so initial recurrence can be retreated with same antibiotic.
- Vancomycin or fidaxomicin are superior for initial recurrence of severe CDI.
- FMT should be considered for all patients with more than one recurrence of CDI.
QUESTIONS?
C. Difficile and Probiotics

- Mechanisms of probiotics:
 - Alteration of intestinal flora (only temporarily)
 - Antimicrobial activity
 - Intestinal barrier protection
 - Immunomodulation
- Benefit of probiotics for prevention of CDI is uncertain
- Benefit of probiotics as adjunct in treatment of nonsevere CDI is suggested in a couple of meta-analyses
- No data supporting use in severe CDI
- Small number of case reports of bacteremia or fungemia attributed to probiotics, but none noted in clinical trials
<table>
<thead>
<tr>
<th>Publication date</th>
<th>Probiotic regimen studied</th>
<th>Study population</th>
<th>Study findings</th>
<th>Similar (commercially available) product*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies in adults</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beausoleil et al (2007)</td>
<td>L. acidophilus and L. casei (25 x 10^9 CFU/day for 2 days, then 50 x 10^9 CFU/day for duration of the antibiotic course)</td>
<td>89 adults (inpatients)</td>
<td>Antibiotic-associated diarrhea occurred in 16% of treated patients and 36% of patients in placebo group (OR 0.34; 95% CI 0.12 to 0.94; p = 0.05)</td>
<td>Bio-K</td>
</tr>
<tr>
<td>Hickson et al (2007)</td>
<td>L. casei (19 x 10^9 CFU/day), L. bulgaris (1.9 x 10^9 CFU/day), and S. thermophiles (19 x 10^9 CFU/day) within 48 hours of starting antibiotic therapy until 7 days after discontinuation</td>
<td>135 adults (inpatients)</td>
<td>Antibiotic-associated diarrhea occurred in 12% of treated patients and 34% of patients in placebo group (p = 0.007; aRR 0.17 [0.07–0.27]).</td>
<td>Actimel (also known as Danactive in United States and Canada)</td>
</tr>
<tr>
<td>Studies in children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kotowska et al (2005)</td>
<td>S. boulardii (10 x 10^9 CFU/day) for duration of the antibiotic course</td>
<td>269 children (72 inpatients and 197 outpatients)</td>
<td>Antibiotic-associated diarrhea occurred in 3% of treated patients and 17% of patients in placebo group. (RR 0.2, 95% CI 0.07–0.5).</td>
<td>Florastor</td>
</tr>
<tr>
<td>Ruszczyński et al (2008)</td>
<td>L. rhamnosus GG (2 x 10^{10} CFU/day) for duration of the antibiotic course</td>
<td>240 children (134 inpatients and 106 outpatients)</td>
<td>Antibiotic-associated diarrhea occurred in 2.5% treated patients and 7.5% of patients in placebo group (RR 0.33, 95% CI 0.10–1.1).</td>
<td>Culturelle</td>
</tr>
</tbody>
</table>
C. Difficile Vaccine

- Vaccine consisting of detoxified, purified toxins A and B currently being investigated.
- Phase 1 trial showed vaccine was immunogenic and well-tolerated.
- Efficacy to prevent CDI, optimal dose, and immunization schedule not yet established.